Bioacid hydroconversion over Co, Ni, Cu Mono- and indium-doped bimetallic catalysts.

نویسندگان

  • György Onyestyák
  • Szabolcs Harnos
  • Dénes Kalló
چکیده

Caprylic acid (CA) as model reactant was selectively reduced in a flow-through reactor in hydrogen stream at 21 bar total pressure and 240-360 °C over alumina loaded with the adjacent Co, Ni, Cu host and In guest metals. The main target of this research is the recognition of efficient cobalt catalysts for carboxylic group hydroconversion compared to more familiar nickel and copper composites. The catalysts were activated in H(2) flow at 21 bar and 450 °C. By variation of main metal or modification with indium, mono- or bimetallic catalysts can be obtained with low hydrodecarbonylation activity and high alcohol selectivity. These composites have higher hydrodeoxygenation (HDO) activity and alcohol selectivity than the conventional commercial catalysts applied for fatty alcohol production. Great variety of catalytic behavior indicates complexity of the surface reactions determined by several interacting factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reforming of Biogas over Co- and Cu-Promoted Ni/Al2O3-ZrO2 Nanocatalysts Synthesized via Sequential Impregnation Method

Utilization of active and stable catalyst could have enormous advantages in industrial application of biogas reforming. In order to achieve this goal, the effects of Cu and Co as promoters were investigated over physical-chemical properties of Ni/Al2O3-ZrO2 catalyst in reforming of biogas. The sequential impregnation was used for preparation of catalysts. The catalysts were characterized using ...

متن کامل

Synthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD

Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850°C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNT...

متن کامل

A comparative study on the kinetics of carbon dioxide methanation over bimetallic and monometallic catalysts

In this paper, Ni/Al and La-Ni/Al catalysts were prepared with a co-impregnation method and employed in carbon dioxide methanation reaction. The catalytic results showed that the catalyst with (10wt.%) of lanthanum and (20wt.%) nickel had the highest activity at low temperatures in CO2 methanation and the La-Ni/Al catalysts changed the reaction path by lowering its activation energy and consequ...

متن کامل

Adsorption of Gas Molecules on Graphene Doped with Mono and Dual Boron as Highly Sensitive Sensors and Catalysts

First-principle calculations have been investigated to study the adsorption of the molecules (SO2, CO, NH3, CO2, NO2, and NO) on the surface of mono boron (B) B-doped and dual B-doped graphene sheets to explore their potential applications as sensors. Our findings indicate that the adsorption of (CO and NH3) on B-doped graphene and (CO and ...

متن کامل

Role of growth temperature in CVD synthesis of Carbon nanotubes from Ni-Co bimetallic catalysts

The effect of temperature variation on the growth of Carbon Nanotubes (CNTs) using Thermal Chemical Vapor Deposition (TCVD) is presented. Nickel and Cobalt (Ni-Co) thin films on Silicon (Si) substrates were used as catalysts in TCVD technique. Acetylene gas was used in CNTs growth process at the controlled temperature ranges from 850-1000 ̊ C. Catalysts and CNTs characterization was carried out ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta chimica Slovenica

دوره 62 1  شماره 

صفحات  -

تاریخ انتشار 2015